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Background: Although relatively abundant in nature, zinc deficiency is one of the most prevalent mineral micronutrient
deficiencies, particularly in sub-Saharan Africa (SSA). However, there are limited data on zinc nutriture for children in the
SSA region.
Objective: A study was undertaken to review the available literature that reported the prevalence of zinc deficiency assessed
using the three population-level indicators (plasma/serum zinc, dietary zinc intake and stunting) among children 0–59 months
of age in SSA.
Methods: A search combination of words was performed on PUBMED, Google Scholar, AGORA, ScienceDirect and SpringerLink
databases. The following search terms were entered; “stunting OR low height for age AND serum zinc OR plasma zinc, AND
dietary zinc intake AND under five AND Sub-Saharan Africa”.
Results: We identified 25 studies. Two were randomised controlled trials and the rest were cross-sectional studies of which
eight were national surveys. Nineteen studies from nine countries have assessed plasma or serum zinc. A total of 10 studies
from 6 countries assessed dietary zinc intake. The prevalence of risk of zinc deficiency ranged from 20–83% using PZn/SZn,
and 31–99% using inadequate dietary Zn intake, with the exception of one study that reported 8%.
Conclusion: The risk of zinc deficiency among children aged between 0 and 59 months appears to be high and of public health
concern. Stunting was the most commonly reported proxy indicator of zinc deficiency. When planning interventions,
stakeholders should consider collecting appropriate biomarker data and design context-specific interventions.
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Introduction
Zinc is an essential element required by many human biological
processes such as the normal growth and reproduction of all
animals, humans and advanced plants1. At subcellular level it
is vital for the functionality of more than 300 enzymes, and
for the stabilization of DNA and gene expression2. Zinc is
unique in that the body has no specific storage reserves and
is hence classified as a Type II nutrient meaning deficiency
causes growth retardation as the body tries to conserve the
nutrient3.

Although zinc is relatively abundant in nature, available evi-
dence suggests that its deficiency is one of the most prevalent
mineral micronutrient deficiencies worldwide since its first dis-
covery in a young Iranian man in 19614. Because there is no
functional reserve or store of available zinc in the human
body, except probably in infants5, a regular, adequate dietary
supply is required. Young children, adolescents, and pregnant
and lactating women have increased requirements for zinc
compared with any other age and sex group and consequently
are at increased risk of zinc deficiency6. In 2005 an estimated
24% of African children suffered from zinc deficiency7 and
nearly one-third of pre-school-going children in low- and
middle-income countries (LMICs) suffer from stunted growth
and diarrhoea attributable mostly to zinc deficiency8. Zinc
deficiency as a risk factor accounts for an estimated 4.8% of
all disability adjusted life years (DALYs) among children under
5 years of age in Africa9.

Although existing research has extensively reviewed zinc nutri-
ture, there is limited information that considers children aged

under five years in the sub-Saharan Africa (SSA) region. A few
reviews have been undertaken on the zinc status of children;
however, these have either included many other target
groups, other LMICs or have focused only on plasma or serum
zinc status10,11. One extensive review has published the stunt-
ing prevalence in SSA12, but none have reviewed and narrated
information on the three suggestive indicators of risk of zinc
deficiency at the population level, that is, dietary zinc intake,
biomarker (serum/plasma zinc levels) and prevalence of stunt-
ing4. It is recommended that these indicators be applied for
national assessments of zinc status to inform interventions.
When prevalence of low serum/plasma zinc is greater than
20% in a population, zinc deficiency is of public health
concern. Similarly, when prevalence of stunting is 20% or
more, the prevalence of zinc deficiency is inferred to be elev-
ated. For dietary indicators, when prevalence of inadequate
zinc intake in a population is greater than 25%, the risk of
zinc deficiency is considered to be elevated. In the absence of
an approved indicator of zinc status and with resources permit-
ting, all the indicators could be used together to obtain the best
estimate of the risk of zinc deficiency in a population and to
identify subgroups with higher risk of zinc deficiency. In
addition, the prevalence of low serum/plasma zinc and
inadequate zinc intake may be used to evaluate the impact of
interventions on the target population’s zinc status13.

The relatively low number of surveys conducted could be due to
the fact that many countries in SSA have not been able to
conduct zinc assessments for various reasons such as lack of
consensus on inclusion of direct indicators of micronutrients
in the health surveys (demographic and health surveys,
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micronutrient surveys, national vulnerability assessment
survey). This has been compounded by high costs and gaps in
research capacity. This review is aimed at providing the avail-
able evidence on the prevalence of risk of zinc deficiency
using the three suggestive indicators among children 0–60
months of age in SSA.

Methods

Literature search strategy
The Population, Exposure, Comparator and Outcomes (PECO)
framework14 was used as a guideline, where Population referred
to children aged 0–59 months in sub-Saharan Africa; in terms of
Exposure, in this case there was no exposure and no C-Com-
parator: and the Outcomes were risk of zinc deficiency assessed
using any of the three population-level indicators, i.e. plasma/
serum zinc, dietary zinc intake, and stunting prevalence. A
search combination of words was performed on PUBMED,
Google Scholar, AGORA, ScienceDirect, SpringerLink and Wiley
Online databases. The search terms entered were “(stunting
OR low height for age) AND serum zinc OR plasma zinc, AND
dietary zinc intake AND under five years OR 60 months AND
Sub-Saharan Africa AND prevalence”. References from the
studies identified were also used where possible. The inclusion
criteria were as follows: the studies had to be written in the
English language and published between 2000 and 2022. For
the definition of stunting the studies had to use the World
Health Organization (WHO) definition, which is height-for-age
(HAZ) or length-for-age (LAZ) less than two standard deviations
below the WHO Child Growth Standards median15. Low PZn
and SZn were defined by cut-offs suggested by International
Zinc Nutrition Consultative Group (IZiNCG): < 65 μg dL in the
morning, and < 57 μg dL in the afternoon for children below
10 years of age16. Inadequate intake was either defined by
age and sex-specific cut-off for estimate of average require-
ments (EARs) of IZiNCG16 or the EARs derived from the WHO17

were used: < 4.0 mg/day for children 6–36 months, and
< 5.5 mg/day for children 3–8 years. The review included the
46 countries in the SSA region. Single and multi-country
studies were included. Any study design was included. It is
important to note that this narrative review may not have
been entirely exhaustive of all studies available from SSA.

Results and discussion
We identified 25 studies. One was a randomised controlled trial
and the rest were cross-sectional studies of which eight were
national surveys (Table 1). Stunting was assessed in 36 of the
46 countries in SSA and prevalence of risk of zinc deficiency
ranged from 20 to 83% using PZn/SZn, 31–99% using
inadequate dietary Zn intake and lastly from 19.1 to 54.6%
based on stunting.

Assessment of prevalence of risk of zinc deficiency
using plasma and serum zinc
Several studies18–24 have measured and reported on plasma
zinc whilst others25–33 measured and reported on serum zinc
(Table 2). The prevalence of zinc deficiency ranged from 20%
to 83%. Besides one study that reported a prevalence of 20%,
all countries reported the prevalence of risk of zinc deficiency
higher than the 20% cut-off. The risk of zinc deficiency is con-
sidered to be elevated if the prevalence of low plasma/serum
zinc is greater than 20%13.

Though different specimens were used for analysis, sufficient
evidence shows that when both plasma and serum of

samples are retained for identical time periods before separ-
ating the cells for analysis, the zinc concentration results do
not differ. Hence, PZn concentration and SZn concentration
are both considered valid and identical biomarkers of zinc
status1,34. Standardisation of procedures for the collection of
samples for zinc analysis is important in order to compare
across surveys35. Although all studies used the recommended
cut-offs of serum zinc concentration and plasma zinc concen-
trations in the classification of zinc deficiency36, one study
from Uganda did not control for time of sampling and fasting
status, hence they could have underestimated or overestimated
the prevalence of zinc deficiency30. Plasma zinc concentrations
fluctuate by as much as 20% during a 24-hour period, largely
due to effects of food ingestion37. Following a meal, there is
an immediate initial increase, after which the concentration
declines progressively for the subsequent four hours then
rises until food is eaten again. Falls in plasma zinc concentration
of≤ 22% soon after a meal have been reported37. During an
overnight fast, the concentration of PZn increases slightly, so
the highest levels of the day are generally seen in the
morning4,38–40. Regardless, daytime variations in PZn concen-
tration among fasted individuals have also been observed,
where PZn decreased from morning to mid-afternoon and
then began to rise again to morning levels41. These factors
have made it important to control for time of blood collection
and fasting status according to published protocol35.

Assessment of risk of zinc deficiency using
prevalence of inadequate dietary intake in SSA
Dietary zinc intake data are a proxy indicator for evaluating the
risk of zinc deficiency in populations, with lower levels of dietary
zinc intake indicating a higher risk of deficiency. However, avail-
ability of complete food composition tables and subsequently
comprehensive dietary intake data in most developing
countries is very limited3,42. A total of 10 studies from 6
countries assessed dietary zinc intake18–20,27,43–47 (Table 3).
Prevalence of inadequate dietary zinc intake ranged from 31%
to 99%, with the exception of a study done in Cameroon that
reported 8%18. Zinc in protein-based foods is found either in
its functional form or in intracellular storage forms. These are
readily taken up by the body, which makes animal protein-
based foods a better source of zinc compared with plant-
based foods. Plants are high in phytic acid, which is an inhibitor
of zinc bioavailability48. Phytate can bind zinc in the intestinal
lumen and form an insoluble complex that cannot be digested
or absorbed by humans due to lack of the intestinal phytase
enzyme49. Phytic acid reduces zinc absorption from cereal-
based diets to just 30–35% and significantly increases the
EAR50–52. Diets in SSA are known to be largely cereal-based
and monotonous with low animal-source foods. Subsequently
they are characterised by inadequate dietary zinc intake.
Mean dietary zinc intake among children in SSA ranges from
2 to 8.1 mg/day and is mostly on the low side compared with
the EAR for this age group, which is 2.5–4.0 mg/day according
to IZiNCG cut-offs (Table 3). Wessells and Brown projected an
overall prevalence of inadequate intake of 25.6% for the SSA
population based on estimated absorbable zinc supply from
food balance sheets53. This difference may be attributed to
the fact that food balance sheet data are more reflective of
adult dietary intakes than intakes of children, as the type of
foods consumed and the adequacy of food intakes by young
children may differ substantially from those of adults in the
same population4. The lowest prevalence of inadequate zinc
intake of 8% was from a national survey conducted in
Cameroon by Engle-Stone et al., which assessed risk of zinc
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deficiency by use of all three recommended indicators. The
authors explain this low prevalence, which was not consistent
with other indicators of nutrient intake they had reported on
(PZn, stunting and anaemia), to be attributable to errors in esti-
mating dietary intake such as reporting errors, illiteracy and
other methodological errors18. They concluded that PZn and
stunting prevalence provided strong evidence that zinc
deficiency was prevalent among children in the study, even in
the presence of apparently adequate total dietary zinc18.

Diets of countries in the SSA region are predominantly cereal
based with low animal-source foods54. Literature has shown
that zinc deficiency is more prevalent in areas with such
dietary patterns and an overall poor dietary intake16. The zinc
from such diets is poorly absorbed due to the high phytic
acid content of plants. Further, children in these SSA countries
are frequently affected by enteric infections, which commonly
result in excess faecal losses of zinc55. Combined, this substanti-
ates a high prevalence of inadequate dietary zinc intake, exces-
sive loss and increased risk of zinc deficiency.

Assessment of risk of zinc deficiency using
prevalence of stunting in children under five years of
age in SSA
Stunting, defined as low height for age, is the cheapest and
easiest indicator to collect in resource-constrained regions. It
is estimated that 84 LMICs have a stunting prevalence of
greater than 20% among children of less than 5 years old53.

The downside to using this indicator is the fact that it is a
non-specific indicator. Stunting has numerous etiologies12.
However, due to the role zinc plays in growth and development,
stunting is still considered at the population level a proxy indi-
cator of zinc deficiency56. More studies seem to have assessed
stunting in SSA than any other biomarker, probably due to
incorporation of anthropometric data in all national surveys
and smaller pilot studies. In a multi-country study by
Quamme and Iversen12, the researchers published the recent
prevalence of stunting from 36 of 46 countries in SSA (Table
4). The lowest prevalence was from Senegal (19.1%) and the
highest was from Burundi (58.3%). The average prevalence of
stunting was 41%. High prevalence of stunting in most
countries of SSA can be indicative of zinc deficiency in this
region.

Implications for practice
The risk of zinc deficiency among children under five years of
age appears to be high and of public health concern in
almost all the SSA countries, irrespective of the recommended
indicators (proportion below cut-off for plasma zinc concen-
tration, dietary zinc adequacy and stunting prevalence)
used. The consequences of zinc deficiency include morbidity
from diarrhoea and pneumonia, mortality and stunting in chil-
dren57. These effects often have cross-generational impli-
cations as zinc deficiency can affect the growth and
development of children, which can have long-term conse-
quences for their health and well-being. For example, stunting
due to zinc deficiency has been linked to poor cognitive

Table 1: Characteristics of studies from sub-Saharan Africa that assessed prevalence of zinc deficiency among children aged between 0 and 60 months

Country Ref Year of study Age group (months) n Study design

Benin 19 2013 12–60 326 Cross-sectional

36 Cross sectional

Cameroon 18 2014 12–59 1002 National survey

Ethiopia 28 2015 6–59 1171 Cross-sectional
26 2011 6–60 240 Cross-sectional
25 2013 6–35 6752 National survey
43 2010 12–23 62BF Cross-sectional

12–23 14NBF
44 2011 6–35 8079 National survey
76 2015 6–59 1143 National survey

Kenya 45 2009 24–60 449 Cross-sectional
21 2011–2014 24–72 487 Cross-sectional
20 2014 22–72 184 Randomised Control Trial
22 2014 48–72 112 Cross-sectional
32 2011 6–59 771 National survey

Malawi 77 2015–2016 6–59 1086 National Survey

Nigeria 45 2009 24–60 793 Cross-sectional

Senegal 33 2010 12–59 1151 National Survey

South Africa 29 2014 36–60 349 Cross-sectional
46 2011 24–60 128 Cross-sectional
47 2010–2011 24–60 149 Cross-sectional
27 2002 6–12 89 Cross-sectional
23 2005 6–12 194 RCT
24 2007 1–6 years 295 Cross sectional

Uganda 30 2005 12–59 247 Cross-sectional baseline survey

Nigeria 78 2014 5–60 100 Cross-sectional

Zimbabwe 79 2021 5–59 452 Cross-sectional

Notes: n: sample size. BF: breastfeeding. NBF: non-breastfeeding.
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development, which may result in low quality of life.
Additionally, zinc deficiency can increase the risk of morbidity
and mortality from diarrhoea and pneumonia, which are
leading causes of childhood illness and death in many parts
of the world58. Children who experience frequent illness and
poor health due to zinc deficiency may be less likely to
thrive and reach their full potential, which can perpetuate
the cycle of poor health across generations59,60.

Given the magnitude of risk of zinc deficiency in SSA from this
review, it is apparent that policy and programming decisions
need to be informed by consolidated studies that explore the
determinants of zinc deficiency in SSA. Furthermore, this
review showed that most countries in SSA have not been able

to conduct zinc assessments using direct biomarkers such as
plasma/serum zinc concentration; as such, stunting is the
most commonly reported proxy indicator of zinc deficiency.
The use of various indicators, direct and proxy with different
methods of sample collection and laboratory analysis, has
made comparison among surveys and studies difficult and in
turn masks the true extent of zinc deficiency across SSA.
Although newer methods to assess zinc nutrition status such
as Linoleic acid:Dihomo-γ-linolenic acid ratio (LA:DGLA)61 are
being proposed, no such studies have been conducted and vali-
dated in SSA. Desaturase enzymes require zinc as a cofactor to
convert LA to DGLA, hence their activity is very sensitive to
early-stage zinc deficiency. The conversion of LA to DGLA is
the highest zinc flux pathway, therefore an elevation in the

Table 2: Studies that assessed plasma zinc and serum zinc levels in children under five years old from countries in sub-Saharan Africa

Country Ref Year of study Age group (months) n Study design
Zinc

deficiency (%) Biomarker reported

Benin 19 2013 12–60 326 Cross-sectional 52.6. PZn

Cameroon 18 2014 12–59 1002 National survey 83.0 PZn

Ethiopia 28 2015 6–59 1171 Cross-sectional 24.0 SZn
26 2011 6–60 240 Cross-sectional 57.1 SZn
25 2013 6–35 6752 National survey 79.0 SZn
75 2015 6–59 1143 National survey 35 SZn

Kenya 32 2011 6–59 771 National survey 81.6 SZn
21 2011–2014 24–72 487 Cross-sectional 74.4 PZn
20 2014 22–72 184 Randomised Control Trial 42.9–53.3 PZn
22 2014 48–72 112 Cross-sectional 52.0 PZn

Malawi 77 2015–2016 6–59 1086 National Survey 60.4 SZn

South Africa 29 2014 36–60 349 Cross-sectional 42.6 SZn

South Africa 27 2002 6–12 89 Cross-sectional 32–35 SZn
23 2005 6–12 RCT 47 PZn
24 2007 1–3 years 154 Cross-sectional 51.3 PZn

24 2007 4–6 years 141 Cross-sectional 45.4 PZn

Uganda 30 2005 12–59 months 247 Cross-sectional baseline survey 54.3 SZn

Nigeria 80 2001 < 60 months 2725 National Survey 20 SZn

Nigeria 78 2014 5–60 months 100 Cross-sectional 26 SZn

Senegal 33 2010 12–59 1151 National Survey 50 SZn

Notes: PZn-plasma zinc, SZn -serum zinc

Table 3: Studies that assessed dietary zinc intake among children from countries in sub-Saharan Africa

Country Ref n
Dietary assessment

method Zinc

mg/day (mean ± SD/median
[IQR]) Prevalence of Inadequate intake (%)

Benin 19 36 24-hr recall 8.1 ± 2.3 79.5

Cameroon 18 108BF 24-hr recall 2.2 ± 0.1

667NBF 4.3 ± 0.1 8

Ethiopia 43 62BF 24-hr recall 3.3(2.0,4.7) 96

14NBF 6.7(3.9,8.1) 51
44 8079 24-hr recall 2.0(0.7,3.7) 99

Kenya 45 449 24-hr recall 2.8 ± 1.5 99
20 112 24-hr recall 5.8(4,6.6) 85

Nigeria 45 793 24-hr recall 3.8 ± 2.9 91

South Africa 46 248 FFQ 4.0(2.6,5.6) 90
47 149 24-hr recall 6.2(4.5,9.1) 55
27 62 24-hr recall 4 ± 1 31

Notes: n: sample size. BF: breastfeeding. NBF: non-breastfeeding. EAR: estimated average requirement i.e. 2.5–4 mg/day for children 6–59 months. FFQ: food frequency
questionnaire
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LA:DGLA ratio has been proposed to be a very sensitive marker
for zinc deficiency62–64. Additionally, there is insufficient data on
potential biomarkers to establish specific cut-offs for zinc inade-
quacy in population studies. These potential biomarkers include
urinary zinc, hair zinc and neurobehavioral function. Low- and
middle-income countries often lack the necessary resources
and infrastructure for conducting large-scale studies on zinc
deficiency. High research costs and reduced technical capacity
hamper progress in this area.

When planning interventions, stakeholders should consider
collecting appropriate biomarker data and make use of the

recommended population-level indicators. Additionally, as mal-
nutrition is a multifaceted problem, SSA countries are more
often tackling food insecurity, which is considered an immediate
concern as it addresses the availability of and access to food for
individuals and populations. In contrast, micronutrient security
is focused on ensuring that individuals received well-balanced
diets including sufficient amounts of essential micronutrients,
which is often considered a long-term goal. Subsequently,
micronutrient deficiencies may not always be the sole focus of
targeted research and health interventions in these countries.
There is a need for increased awareness and an investment
case for prioritizing micronutrient research and alleviation strat-
egies. In view of the evidence summarised in the current review,
there is a need for initiatives to support scale-up routine surveil-
lance of risk of zinc deficiency at population level in SSA
countries. This will allow planning and implementation of pre-
ventive interventions for high-risk populations.

The WHO is yet to established guidelines for large-scale zinc
interventions that are designed to prevent inadequate zinc
intake and, in turn, poor zinc nutriture. Regardless of publishing
guidelines for fortification of maize/corn meal with vitamins and
minerals, the WHO reported scarcity of evidence on the effect of
fortified maize flour or maize-flour products for zinc on the zinc
status and deficiency, growth and adverse effects in children65.
Lack of a direct relationship between zinc fortification and nutri-
tion outcomes despite improvement in dietary intake has also
been reported in studies of South Africa, where prevalence of
zinc deficiency among children remained high despite fortifica-
tion of maize meal and wheat flour with zinc for close to two
decades10,66. Moreover, in the absence of a gold standard zinc
biomarker, programme planners face challenges in assessing
andmaking recommendations for preventive zinc interventions.

Nevertheless, interventions that improve the bioavailability of
zinc from plant foods, dietary diversification and increased con-
sumption of animal-source foods have the potential to signifi-
cantly reduce zinc deficiency in children and women16.
Industrial zinc fortification and/or biofortification and/or agro-
nomic fortification (zinc fertilizers) are emerging interventions
to address zinc deficiency in low-income settings like SSA67.
However, impact assessment for current zinc fortification pro-
grammes in SSA settings is lacking. Additionally, studies that
evaluate the effectiveness of zinc supplementation as part of
a multiple-micronutrient powder for children and/or pregnant
women are warranted68.

Incorporation of zinc assessment into periodic
monitoring and surveillance
Considering the public health relevance of zinc deficiency in
most SSA countries, there is a critical need for mainstreaming
zinc in routine surveillance frameworks, although there still
remains an argument on which biomarker to use and how to
address the glaring gap in availability of biomarker data from
SSA. Nonetheless, the determination of zinc deficiency is man-
datory for the design of evidence-based strategies for its allevia-
tion. Therefore, following determination of groups at high risk
of zinc deficiency, the choice of intervention will be determined
by the urgency of the situation, resources available, technology
required to deliver and sustain the interventions and evidence
in support of the intervention type16. Additionally, complemen-
tary interventions should be combined with ongoing national
food, nutrition and health programmes, and promoted by main-
streaming them into existing nutrition education and social
marketing techniques to improve their effectiveness and

Table 4: Studies that assessed stunting among children below five years
from countries in sub-Saharan Africa

Literature
reference Age

Study site and
sample

Prevalence of
stunting

40 1–60
months

33 countries in
SSA 368 450

Total: 41.1%
Nigeria 39.2%
Ethiopia 50.8%
DRC 43.4%
Highest: Burundi
58.3%
Lowest:
Gabon 21.0%

41 < 60
months

Addis Ababa in
Ethiopia 5,822

19.6%

42 < 59
months

35 countries
384,747

West 33.9%
Central 37.8%
East 35.3%
South 26.5%
Highest: Burundi
54.6%
Lowest: Senegal
19.1%

43 6–59
months

Wolayta Sodo
Town, Ethiopia
315

22.2%

44 < 59
months

Nakaseke and
Nakasongola
districts,
Uganda, 104

38.5%

45 < 59
months

25 countries in
SSA 213,889

49.5% multiple births
and 36.9% singleton
births

46 < 59
months

18 countries in
SSA 55,749

47 6–59
months

DRC 3,721 35.2%

48 < 59
months

Rwanda 3,594 38%

49 < 59
months

Cameroon
5,053
Nigeria 18,823
DRC 3,777

Cameroon 32%
Nigeria 41%
DRC 44.5%

50 6–59
months

Kenya
1,245

47%

51 6–59
months

Mozambique
874

37%

52 < 59
months

34 countries in
SSA
299,065

Highest Burundi 54.6%
Lowest in
Ghana 19.2%.
Highest in Central
and East Africa
Lowest in the
South

53 6–59
months

Zimbabwe 452 27.85%

Notes: Reproduced with permission from Quamme and Iversen12.
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sustainability. A multi-sectorial approach involving various
sectors such as government, public health, industry and edu-
cation is also needed for the success of routine surveillance
and intervention rollout.

Soil health, agronomic fortification and zinc
deficiency
Zinc deficiency in soils is an important constraint to crop pro-
duction, and the most ubiquitous micronutrient deficient in
crops worldwide,69 particularly limiting yields in SSA70. In set-
tings where soils and crops are deficient in zinc, there is a cor-
relation between low soil zinc and lower plasma/serum zinc
as well as low weight-for-height among children28. Therefore,
in SSA where zinc deficiency is widespread, the use of agro-
nomic fortification and fortification for maize has the potential
to address this public health problem if mainstreamed within
the framework of existing interventions. Biofortification is a
process of enhancing the content of vitamins and minerals in
a crop through plant breeding, transgenic techniques or agro-
nomic practices71. Biofortified staple crops, when consumed
regularly, will generate measurable improvements in human
health and nutrition72–74. Agronomic biofortification is the
addition of limited micronutrients to several crops through
ground fertilisers or foliar application to improve soil zinc or
plant zinc content respectively71. For agronomic biofortification
to be successful, there must be a causal link between soil Zn and
human Zn status in target communities in targeted geographi-
cal spaces75. Therefore, studies that explore this critical link in
SSA countries are required to inform policy direction.

Conclusions and recommendations
In conclusion, the available data indicate that the prevalence of
zinc deficiency among children under five years of age in SSA
countries is elevated and of public health concern. Many
countries in SSA have not been able to conduct zinc assess-
ments using recommended biomarkers and, as such, stunting
is the most commonly reported proxy indicator of zinc
deficiency. Therefore, when planning interventions targeted at
alleviating zinc deficiency, stakeholders and policy-makers
should invest in assessing the recommended biomarkers of
zinc status. They should take into consideration the demo-
graphic, socioeconomic, geographical and pathological factors
shown to be associated with the risk of zinc deficiency in chil-
dren from African countries, to design context-specific interven-
tions. Specifically, the improvement of zinc bioavailability in
plant foods as well as the potential of the application of biofor-
tification and agronomic biofortification in addressing zinc
deficiency in SSA has been documented and can be considered
during intervention design.
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